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ON THE MODAL CURVE OF NONLINEAR NORMAL MODES

Chol·Hui Pak* and Sun·Jae Park"

(Received Mech 10. 1988)

In a nonlinear holonomic conservative system having two-degree-of-freedom. the modal curves of normal mode vibrations are
investigated investimgated by the harmonic balance method. The general procedure to compute the modal curve is suggested. Even
if the linearized frequencies of the system are satisfied with the commensurability condition under which the approaches using the
perturbation method have the problem of small divisor, the modal curve can be obtained by this method, provided that the
fundamental harmonics are dominant when the normal modes are expanded in Fourier series in time domain. As an example. in
a system with cubic nonlinearity the modal curves are computed analytically and numerically to compare both results.
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1. INTRODUCTION 2, BASIC THEORY

r(h} = {(x. y) : h- V (x. y) 20}

x+ Vx=O
Y+ Vy=O

where subscripts denote partial derivatives. For a given h,
the motions remain in a closed and bounded region

(2)T+V(x,y}=h

where h is a constant equal to the total energy of a motion
and the equations of motion may be written as

where dots denote differentiation with respect to time t, and
the potential energy V(X, y} satisfies the proerties

(a) V(X, y}= V(-X, --y}
(b) \7 V vanishes only at the origin, and the curves ( V (X, y)

= constant} form a continuum of smooth, simple, non-self
intersecting closed curves containing the origin.

Then there is an energy integral

Consider a nonlinear holonomic conservative system hav
ing two-degree-of-freedom. Assume that the kinetic energy T
may be expressed in the form

In this paper, we shall be interested in deriving the proce
dure to compute the modal curve of normal mode vibrations
in nonlinear conservative systems 1.J.aving two degrees of
freedom.

In the normal mode of linear systems, the relation between
the generalized coordinates x and y is expressed by y = px or
x =qy where p and q are constant for all amplitude of
vibrations. In nonlinear normal modes, the relation between x
and y is not simple; Both the slope p(or q} and curvature
may be varied as the amplitude of mode increases, if the
normal mode is nonsimilar(Rosenberg, 1966}.

Rand(1974} has utilized a perturbation method to compute
the modal curve of nonsimilar normal modes having suffi
ciently small amplitudes. He has shown that the modal curve
may be expressed in the form y=P1X+P2X3+P3X 5"'P,X,,-1,
and that the coefficients p" i=2, 3, "', may be unbounded if
the linearized frequencies satisfy some commensurability
conditions.

It will be shown ::-tere that the modal curve may be expres
sed in the same form as the previous work, but the coeffi
cients are bounded, regardless of the ratio of linearized
frequencies, provided that the fundamental harmonics are
dominant when x and yare expanded in Fourier series in
time domain. In particular, in the system of cubic nonlinearity
the modal curve tends to be a straight line when the ampli
tude is sufficiently large. Some examples are shown to com
pare the analytical results with computer solutions.
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The normal mode is a periodic motion which passes
through the origin and two rest points. The modal curve
traced by x (t) and y (t) of normal mode in the xy-plane is
called similar if the modal curve is straight, and nonsimilar
otherwise,

Due to the property (a) of V (x. y), every trajectory passes
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through the origin, and r is the period of a normal mode.
Then it is readily verified that for all t

Therefore. the solution of normal modes may be expanded in
the Fourier series given by

x(-t)=-x(t). y(-t)=-y(t) (4)

x(r-t)=x(-I+t), y(; -t)=y(; +t) (5)

where w is the circular frequency of normal mode, w=2J[..
r

Substitute (6) into the equations (3) of motion and set the
coefficients X n • Yn of harmonics equal to zero to obtain

dZy
dx z 6Pzx+20Pax a+42P.x 5 + ...

'[~1-+-(-"-~""-?)2J3I2- [1 +(PI +3Pzx 2+5Pax'+ .. · )Z],/Z.

(12)

x

3. THE CHARACTERISTICS OF
MODAL CURVES

The coefficient PI in (10) is the slope of modal curve
measured from the x-axis. The other coefficients PZ• Pa, ...

may represent the curvedness of modal curve. It will be
shown that these coefficients are bounded. The curvature of
modal curve is written as

not vanish and the assertion (10) is valid.
By taking the number N sufficiently large, the approxi

mate solution so obtained will approach to the exact solution
(6). and the modal curve expressed in (10) becomes an infinite
series.

(6a)

(6b)

i=1, 2. 3,
i = 1, 2. 3,

Xn (w. Ai. Bi) =0, n=1, 2, 3,
Yn(w. Ai, B i) =0. n=1, 2, 3,

y({) = ~ B n sin(2n-l)wt
n=l

x(t) = ~ A n sin(2n-1)wt
n=l

where the following relation has been utilized

sina (2t-1) esinP(2m-1) e sin 7 (2n-1) e
M

= ~ C.sin(2i -1) e
, I

(8)

Therefore. if X is bounded for all x in the closed interval
between zero and the x-amplitude of normal mode. then it is
clear that coefficient p z, Pa, ... are bounded. The curvature
may be rewritten in the form

(13)

for all natural number t. m, n. a, /3. " and

M=a(2t-l) +/3(2m-1) +,(2n--1).

The harmonic balance method is applicable to compute An.
Bn and w. Choose the first N terms of (6). Then from (7) 2N
equations are obtained in terms of 2N +1 unknowns An. Bn,
n=l, 2, 3, "', N, and w. Hence An and B n may be solved in
terms of w. By making the use of (8), (6a) may be rewritten in
the form

where v is the velocity of normal mode and X may be expres
sed as a function of time along a normal mode. Then x(t) is

a periodic function and continuous except at t = ; where v =

O. Since every trajectory intercepts the boundary of r (h)
orthogonally, both the numerator and denominator of (13)

vanish at t = ;. and hence the L'Hospital's rule may be

applicable:

N

x 2J-l(t)::::: ~ dijsin(2i-l)wt. j=l, 2..... N (9)
i=l

where the harmonics of order higher than 2N -1 are neglect
ed. Now it is claimed that the modal curve may be approx
imated in the form

(10)

lim d (17 . 1/')
lim I·' dt VYX-VxY

r xU) =4 _

I-I lim _d.(/.?)
1·1 dt .'

Substitute (9) into (10) and equate the coefficients of har
monics given by (6b) to obtain the linear equations

Then Pi are readily computed whenever the (N x N) matrix
D=(dij) is nonsingular.

It can be shown that if the order of magnitude of A I is
greater than An. n=2. 3. "', N. then the matrix D is nonsin
gular. In fact. it is found after some calculations that the jth
column of D contains homogeneous terms of order 2j -1 in
A 10 A z• "', AN and that every element of D at the main
diagonal and above it contains terms of the highest order
A~J-l but the one below the main diagonal contains that of
Afn I, n < j. This implies that the determinant of D does

N

B i = ~ dijPj, i=1, 2..... N.
j=l

(11)

Therefore, the function X (t) is continuous at every t and is
bounded.

It will be shown that the coefficients p z, Pa• ... are bounded.
Suppose on the contrary that one of coefficient Pi is un
bounded. Then the curvature vanishes at every point of
modal curve because the denominator of (12) has higher order
of magnitude than that of numerator. And the slope of modal
curve. as computed by (10), is infinite. This implies that the
resulting modal curve represents the x == 0 mode. which occurs
in a special case V x (x. Y) == O. and this mode would not be
represented in the form (10). This contradicts the supposition
that Pi is unbounded.

It will be shown that every modal curve asymptotically
approaches to a straight line as the amplitude of normal
mode becomes sufficiently large, if the solutions. represented
by Fourier series (6). is dominated by the fundamental har-
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monies, all x,

(14) (w~-wD Px+ [M (P) - L (P) PJx3=0 (18)

The coefficient PI, P2 , '" may be computed by (11). By the
condition (12), the determinant Ll of matrix D = (d,J has
been demonstrated to be nonsingular. In fact, the highest
order term of Ll is found to be Af'. The coefficient Pj may be
calculated by

where

L(P) =4a+3bP+2cP2+dp3

M(P) =b+2cP+3dp2+4cP3.

N (15)

Since (18) is a finite power series, each coefficient must
vanish to obtain

where
(w~-'wD p=o (19a)

and

Consider two cases: WI~'W2 and WI = W2. In the case of (fJ!

0/= W2, we have P = 0 by (19a), and b = 0 by (19b). This is the
y == 0 mode_ Similarly, by taking x = qy, we have the x == 0
mode with d = O. In the case of w, =, W2, (19a) is identically
fulfilled, and similar modes are obtained by solving the fourth
order equation (19b) for P. This equation is identical with
that of the associated nonlinear homogeneous
system(Rosenberg, 1966) given by

dll d12 diN
d21 d22 duo!

Ll= d31 d32 d3N

dv I dV2 dNN

dll d l2 dlj. I BI dlj+1 diN
d21 d22 d2j I B2 d2j+1 d2N

Llj = d31 d32 d3j .1 B 3 d3j+1 d3N

dVI dN2 dNj'1 B N dNj+1 ... dNN

M (1") - PL (P) =0. (19b)

4. SYSTEMS HAVING CUBIC
NON -LINEARITY

V(x, y)=1(wrx 2+uAy 2)

+ax'+bx3y+cx2y2+dxy3+cy' (16)

Consider a system whose potential energy V (x, y) is the
sum of quadratic and homogeneous form of order four in the
generalized coordinates x and y written in the form

where WI and W2 are the linearized natural frequencies.
Assume that parameters a, b, c, d and c are such that V (x,
y) is positive definite in the whole xy,plane. Then it satisfies
the properties (a) and (b), and hence the theories described in
sections 2 and 3 are applicable. The equations of motion are
written as

(21)

(20)

(22a)

1'- 1 ( '2+ '2)-'2 x y

V = ax'+ bx3y + CX2y 2 + dxy3+Cy'.

x =A ,sin wt + A 2sin 3wt

x ,= cosf) x - sinf) 51
r=sinB x+cosB 51

Then by taking b=0, (19b) is obtained where P=tan B.
In computing the modal curve of nonsimilar normal modes

which is the extension of linearized mode y == 0, it is assumed
that W,1=W2 and b1=O. For the first approximation of modal
curve, assume the solution in the form

V(x, 51) =~-W2(X2+ 51 2)

= ax'+ bx3y+ c.f 2y'+JXy 3+ ey'.

Substitute (21) into the potential energy V (x, y) of (16) to
have the resulting expression in the form

It had been shown elsewhere(Pak and Shin, 1985; Pak and
Yun, 1985) that there are at least two distinct real roots in
(19b). Then there are generically two or four similar modes,
and the non-generical case corresponds to three similar
modes containing two simple roots and a double root.

In the case of w, = W2, it is not possible to find the similar
mode y=O if bO/=O. In expressing the equation (17) of motion
with b 1= D, the selection of coordinates seems to be inadequate
if one expects that at the small energy h the normal mode
may be described in the neighborhood of y = O. However, it is
always possible to find an orthogonal transformation of
coordinates such that in new coordinates the kinetic energy is
written in the form (1), and the potential energy in the form
(16) with b= O. Let the transformation of coordinates be given
by

(7)
.r +wrx +4ax 3+3bx 2y +2 cxy2+ dy 3=0
ji + w~y + hx 3+2cx2y + 3dxy2+4 cy3=0

First, we shall find all the possible combinations of system
parameters so that a similar normal mode exists. To compute
them we have to make use of the fact that a similar normal
mode exists if there is a constant number p or q such that y
= px or x =qy satisfies the equation (17) of motion. When y
= px is substituted into (17) and x' is eliminated, we obtain for

Further calculations show that the element d'j of matrix D at
i=j+l has the order of magnitude A1J-l, j=l, 2, 3, ''',
N, Then it is readily found that the highest order term of Ll j

is A'(' "J·'I·Bj • Therefore the order of Pj is A;(2jll'!3" j
= 1, 2, ''', N. This implies that P" i= 2, 3, ,N,
vanishes when the amplitude of normal mode is sufficiently
large, and hence the modal curve approaches to a straight
line.
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y=Px+ax3. (22b) Solve (27) to obtain

Substitute (22b) into the first equation of (17) to obtain

x+wfx+L(P)x3+ aL'(P)x 5=0. (23)

Then the approximate solution of (23) may be written as (22a)
where where

P=±( ~ Af-6-~~)(-}wZbAl)

a = - ~ (7W
Z+ wD ( ~ bA1)

(28a)

(28b)

Substitute (22a) into (25) and set the coefficients of sin wi and
sin 3wl equal to zero to obtain

wZ=wf+ ~ L(P)Af+ ~aL'(P)At

Az= -8~2-[~L(P)Af+-&aL'(P)AIJ.

Substitute (22b) into the second of (17) to obtain

Px' + 3ax z x' + ax 3+ M (P) x 3+ aM' (P) x 5= O.

Al (w~-WZ) P+[3wZ(}AJ- 2ZA1Az

+ l~~A ,Ai)- M' (P) D,]

=- M (P)(~ AJ--}AIAz+tA,Ai),

Az(w~-9WZ)P+[3W2(-tA1+1}AIAz

+ 4~IA~)+ M' (P) D2]

=- M (P{-}AIAz+~-A~)

where

(24a)

(24b)

(25)

(26)

(29)

provided that f'::, ~o. It is not difficult to show that f'::, does not
vanish except the case of WI = Wz, where f'::, is computed as

f'::,= 2
4
7aA4(wr+3aAD.

As described previously, if WI = Wz, every normal mode is
similar, and hence the case of WI = W2 may be eliminated.

On the other hand, when the amplitude is very large, the
approximate modal curve can be calculated through the
following procedure: The approximate modal curves are
assumed in the form of eq. (22a, b). By substituting eq. (22a)
into eq. (22b) and neglecting the high order terms of sine
function, we can obtain

y= P(A,sin wt+ Azsin 3wt)
+ a (A ,sin wt + Azsin 3wt)'

~[A,P+(}A1- ~ AIA z+ ~ A,A~)a ]sin wt

+[AzP+( -~-AJ+ ~ AIA z+ ~ A~)a ]sin 3wt (30)

Also, the solution y is assumed in the form

y = Blsin wt + Bzsin 3M (31)

[) - 5 A5 5 A'A + 15 A3Az 15 AzA3 + 1 A A41-8- 1-16 I 2 4 I 2-8 I z ""4 I z

!J = _.li_A5+"~A4A _~A3Az+~A2A3
z 16 I 8 I 2 4 I Z 4 I 3

+~A,A~+-}At

By solving (26), P and a may be found. Since (26) are non
linear and coupled, a closed form of solution is not possible.

We shall restrict our task to find the modal curve of
nonlinear normal modes having small amplitudes. Since the
mode considered here is the extension of linearized mode y ==
O. P is assumed to be small. Then the following approxima
tions are possible;

L(P)=4a
M(P)=b
wZ=wf+3aAI

A "- a A 3z-sa; I.

Therefore, (26) are rewritten as a linear system of equations

(27)

as two term approximation of eq. (6b). By comparing the
coefficient of corresponding harmonics in eq. (30) and eq. (31),

or

p __<'='i:J.J+6AIAz+3A~)B,- (3A1-3AIAz+6A,AUBz
- (-At+3AJAz+3AfA~-3A,AD

4(A ,B z- AzB,)
a=T'::'flt+3AfA 2+3ADH-3A,AD'

We can show that the highest order of magnitude of numera·
tor of a is less than that of denominator. Therefore, the
value of a vanishes as Al approaches to infinity, under the
assumption of condition (14). This means that the modal
curve approaches to a straight line as the amplitude becomes
sufficiently large.

It is readily seen from (28b) that a vanishes as Al
approaches to zero. Therefore, it may be concluded that the
modal curve of nonsimilar normal mode is close to a straight
line if the amplitude is sufficiently small or large, regardless
of the commensurability of linearized natural frequencies.
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5. NUMERICAL EXAMPLES
ed as Fourier series by using the Fourier series algorithm to
obtain the coeffients of corresponding harmonics of x (t) and
y (I) as follows:

We consider the cubic nonlinear two-degree-of-freedom
system which has the following coefficients of potential
energy:

x (I) =, A,sin wI +A3 sin 3wt+ Assin 5wl + .
y (t) = B,sin wI +B 3 sin 3wl +Bssin 5wl + .

As a result, when the modal curves are expressed as
315

a=2T , b=-7' c=4 28, d=l, e=2.

In the case, the numerical analysis by using the 4th order
Runge-Kutta method is performed to find nonlinear normal
modes x (I) and y I I) when the linearized frequencies have
the values;

the coeffients up to the 3rd order polynomial by the procedure

y
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Fig. 3 The trajectories of rest point of normal modes in the case
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The trajectories of rest point of normal modes are plotted in
Fig.!, 2, 3, respectively. To express the degree of straight of
nonlinear normal modes, the shift of modal curves with
respect to a staight line is defined as

from Fig. 4.
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of section 2 are obtained and tabulated in Table 1, 2, 3. The
mode names il and i2 mean the modes extended from linear·
ized modes, and nl and n2 mean the bifurcated modes in Fig.
1, 2, 3, respectively.

The degrees of straight of modal curves in Table 2 are
shown in Fig. 5. It shows that the degrees of straight of modal
curves vanish as the amplitudes of normal modes become
sufficiently small or large.

Table 1 Fourier coefficients of x (t) and y (t), and the coefficients and the degree of straight of modal curves in the case that
3 1 5

a=27 , b=7' c=4 28 , d=l, e=2, uh=4, w2=0.5wI'

Fourier coefficients of x (t) Fourier coefficients of y (t) Coefficients of
Modeh modal curve DS name

Al A 3 As BI B 3 B5 PI P2
0.1£+02 0.97£+0 -0.12£-1 0.29£-3 0.76£-2 -0.25£-3 0.49£-5 0.74£-2 0.66£-3 -6.57£--4 II

0.13£+0 O.l1£-Z -0.66£-4 -0.12£+1 0.40£-1 -0.14£-2 -0.85£+ 1 -0.89£+2 1.67£-2 12

0.1£+03 0.21£+1 -0.63£-1 0.26£-2 0.67E-l -0.26E-2 0.10E-3 0.30E-l 0.23E-3 -1.22E-3 II
0.65£+0 -0.17£-1 0.71E-3 -0.24E+l 0.96£-1 -0.43£-2 -0.35£+1 -0.42£+0 1.38£-2 12

0.9£+05 0.13£+2 -0.58£+0 0.25E-l 0.16E+l -0.74£-1 0.32E-2 0.12£+0 0.98£-6 -1.93E-4 II
0.63£+1 -0.27£+0 0.16E-l -0.12£+2 0.56£+0 -0.34E-l -0.20£+1 -0.83£-4 7.52E-4 12
0.10£+2 -0.45E+0 0.22£-1 0.81E+l -0.36E+0 0.18£-1 0.78£+0 0.98E-5 -7.58£-4 nl
0.10£+2 -0.47E+0 0.24E-l 0.75£+1 -0.33£+0 0.17£-1 0.69E+0 0.79E-5 -7.32£-4 n2

0.1£+ 10 0.13£+3 -0.55£+1 0.49£+0 0.19E+2 -0.79£+0 O.71E-l 0.14E+0 0.10£-9 -2.05E-6 II
0.66E+2 -0.29£+1 0.15E+0 -0.13E+3 0.58E+l -0.31E+0 -0.20E+l -0.71E-8 7.27E-6 12
0.96E+2 -0.39E+l 0.35E+0 0.96E+2 -0.39E+l 0.35E+0 0.99E+0 0.13E-8 -7.45E-6 nl

0.12E+3 -0.54E+l 0.24E+0 0.60E+2 -0. 27E+ 1 0.12E+0 0.50£+0 0.43E-9 -5.93E-6 n2

Table 2 Fourier coefficients of x (t) and y (t), and the coefficients and the degree of straight of modal curves in the case that
3 1 5

a=2-"i' b=7' C=428, d=l, e=2, wI=4, w2=2wI'

Fourier coefficients of x (t) Fourier coefficients of y (t)
Coefficients of

Modeh modal curve DSAl A 3 As BI B 3 B 5 name
PI P2

0.32E-02 0.15E-7 -0.44E-9 0.28E-11 0.10E-l 0.37E-5 0.20E-5 0.69E+6 -0.27E+21 1. 19E-7 II
0.20E-l 0.60E-5 0.34E-5 -0.17E-7 -0.35E-8 -0.57E-11 -0.14£-5 0.17E-2 -6.95E-7 12

0.IE+05 0.33E+l -0.14E+0 0.60E-2 0.66E+l -0.25E+0 0.10E-l 0.20E+l -0.27E-2 7.14E-3 II
0.45E+l -0.19E+0 0.81E-2 -0.65E+l 0.24E+0 -0.98E-2 -0.14E+l 0.12E-2 -1.00E-2 12

0.4E+06 0.12E+2 -0.54E+0 0.24E-l 0.14E+2 -0.64E+0 0.29E-l 0.12E+l -0.20E-4 1. 44E- 3 II
0.96E+ 1 -0.42E+0 0.20E-l -0.18E+2 0.80E+0 -0.37E-l -0.19E+l 0.63E-4 -1.47E-3 12
0.18E+2 -0.82E+0 0.36E-l 0.52E+l -0.22E+0 0.10E-l 0.28E+0 -0.21E-5 7.77E-4 nl
0.18E+2 -0.82E+0 0.41E-l 0.41E+l -0.18E+0 0.89E-2 0.22E+0 -0.16E-5 6.27E-4 n2

0.1E+I0 0.96E+2 -0.39E+l 0.35E+0 0.96E+2 -0.39E+ 1 0.35E+0 O.lOE+l -0.55E-8 2.96E-5 II
0.66E+2 -0.29E+l 0.15E+0 -0.13E+3 0.58E+ 1 -0.31E+0 -0.19E+l 0.28E-7 -2.90E-5 12
0.12E+3 -0.57E+l -0.51E+0 0.60E+2 -0.28E+ 1 -0.25E+0 0.49E+0 -0.16E-8 2.37E-5 nl
0.13E+3 -0.64E+l -0.61E+0 0.19E+2 -0.92E+0 -0.88E-l 0.14E+0 -0.39E-9 8.31E-6 n2

Table 3 Fourier coefficients of x (t) and y (t), and the coefficients and the degree of straight of modal curves in the case that
3 1 5

a=2--7"' b=7' c=4 28 , d=l, e=2, (01=4, w2=3wI.

Fourier coefficients of x (t) Fourier coefficients of y (t)
Coefficients of

Modeh modal curve DS
AI A 3 As BI B3 Bs name

PI P2
0.5E+03 0.84E-l -0.29E-2 0.63E-4 0.24E+l -0.18E-l 0.l1E-2 0.30E+2 -0.39E+3 4.59E-3 II

0.34E+l -0.12E+0 0.63E-2 -0.40E-l -0.89E-3 0.28E-4 -0.13E-l 0.21E-3 -2.85E-3 12
0.2E+07 0.18E+2 -0.79E+0 0.39E-l 0.22E+2 -0.96E+0 0.47E-l 0.12E+l -0.l1E-4 1. 71E-3 II

0.14E+2 -0.64E+0 0.30E-l -0.27E+2 O.l1E+l -0.56E-l -0.19E+l 0.33E-4 -1.76E-3 12
0.3E+07 0.20E+2 -0.89E+0 0.47E-l 0.24£+2 -0.10E+l 0.56£-1 0.12E+l -0.71E-5 1.40E-3 II

0.15£+2 -0.71E+0 0.32E-l -0.30E+2 0.13E+ 1 -0.61E-l -0.19E+l 0.22E-4 -1.43£-3 12
0.30E+2 -0.13E+l 0.73E-l 0.89E+l -0.38E+0 0.21£-1 0.29E+0 -0.78E-6 7.81E-4 nl
0.31E+2 -0.13E+l O.72E-l 0.66E+l -0.28E+0 0.15E-l 0.21E+0 -0.55£-6 5.92£-4 n2

O.IE+ 11 0.17E+3 -0.81E+l 0.58£+0 0.17£+3 -0.81£+1 0.58E+0 0.10E+l -0.14E-8 2.49E-5 II
0.l1E+3 -0.55E+ 1 0.27£+0 -0.23E+3 0.11£+2 -0.55£+0 -0.19E+l 0.74£-8 -2.44E-5 12
0.21E+3 -0.10E+2 O.72E+O 0.10E+3 -0.51E+l 0.36£+0 0.49E+0 -0.45E-9 2.00£-5 nl
0.23E+3 -0.l1E+2 0.81E+0 0.34E+2 -0.16£+1 O.l1E+O 0.14E+0 -0.10£-9 7.03£-6 n2
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6. CONCLUSIONS

In this paper, we studied on the modal curves of normal
modes of two-degree-of-freedom system. As a result, we
obtained the following results:

(I) The method to compute the nonsimilar normal modes is
proposed by utilizing the harmonic balance method.

(2) If the fundamental harmonics are dominant when the
normal mode x (t) and y (t) are expanded in Fourier series in
time domain, the coeffients Pi (i = 2, 3, ... ) of modal curves
represented by

are bounded regardless of the ratio of linearized frequencies.

(3) The modal curves approach to a straight line as the
total energy of the system becomes sufficiently high or low.

(4) The modal curve of a system with the cubic nonlinearity
can be approximately considered as a straight line in whole
xy-plane.
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